SYNTHESIS AND CHEMISTRY OF 5, 6-DIHYDRO-6-METHOXYURIDINE DERIVATIVES. ACCESS TO 0⁶, 5'-CYCLO-5, 6-DIHYDROURIDINE

Jean-Louis FOURREY and Patrick JOUIN

Institut de Chimie des Substances Naturelles, CNRS, 91190 Gif sur Yvette, France

(Received in UK 26 July 1977; accepted for publication 4 August 1977)

Irradiation of uridine <u>la</u> (or of its derivatives) in methanol produces three major photoproducts¹. One of these, which eliminates methanol after heating, was supposed to be 5, 6-dihydro-6-methoxyuridine <u>3a</u>. To confirm this structural assignment we have devised a two-step synthesis of this compound and of its derivatives <u>3b</u>, <u>3c</u> and <u>3d</u>. We have studied the chemical behaviour of <u>3a</u> and more particularly its transformation into O^6 , 5'-cyclo-5, 6 -dihydro-2', 3'-O-isopropylideneuridine <u>5</u> which is described for the first time.

A methanolic solution of 2', 3'-O-isopropylideneuridine <u>ic</u> was treated with bromine² at 0°C to give after addition of $Ag_2CO_3/celite$ a 2:1 mixture³ of diastereoisomers <u>2c</u> which were not separated. The reduction of these bromo derivatives was accomplished by irradiating <u>2c</u> in ethanol at -20°C⁴. Si lica gel column chromatography of the reaction mixture obtained after neutralisation of the ethanolic solution with Amberlite IR 45 afforded the two main photoproducts <u>3c</u>(-) $[Dec. 155-160°C, [\alpha]_D(CHCl_3)-80°]$ and <u>3c</u>(+) [Dec. 138-142°C $[\alpha]_D(CHCl_3) + 38°]$. Structures <u>3c</u> are in agreement with analytical and spectral data (Table). Both epimers <u>3c</u>(-) and <u>3c</u>(+) lose methanol upon warming to yield 2', 3'-O-isopropylideneuridine <u>1c</u>; the rate of this thermal elimination is enhanced by the addition of acid. Using the same synthetic route $(1 \rightarrow 2 \rightarrow 3)$ we have successfully prepared the 5, 6-dihydro-6-methoxyderivatives <u>3a</u>, <u>3b</u> and <u>3d</u> which, as <u>3c</u>, were found identical to those obtained after irradiation of the corresponding uridine derivatives in methanolic solution.

Treatment of $3c_{(-)}$ and $3c_{(+)}$ in acidic methanol below 10° C led to a new derivative which must be 0^{6} , 5'-cyclo-5, 6-dihydro-2', 3'-O-isopropylideneuridine 5 [Dec. 156-160°C $[\alpha]_{D}$ (CHCl₃) -60°]⁵. Structure 5 is based on the following arguments : the new compound 5 is an isomer of 2', 3'-O-isopropylideneuridine 1c which shows no UV absorption above 230 nm. It reverses to 2', 3'-O-isopropylideneuridine 1c upon warming. The NMR spectrum of 5, characterized by the absence of OCH₃ signal, is fully consistent with the structural assignment. In this spectrum the singlet due to H-1' is strongly deshielded which results from the anisotropy effect of the carbonyl at C-2⁶ and confirms the <u>anti-</u>conformation of this novel cyclonucleoside.

The behaviour of <u>3c</u> (-) and <u>3c</u> (+) to give <u>5</u> is not unexpected. It is well known that 2', 3'-O-isopropylidene derivatives of uridine prefer the <u>anti-conformation</u>⁷ thus favouring interaction between 5'-OH and C-6 for which there are several examples⁸⁻¹⁰. We have monitored the transformation of <u>3c</u>(-) and <u>3c</u> (+) into <u>5</u> by NMR spectroscopy using CD_3OD containing DCl as solvent. These experiments showed that the reaction was faster for <u>3c</u> (+)

	•						
	H 1'	Н2',	H 3'	H 4'	H 5'	H 5	н 6
<u>3c(-</u>)	5.52 d J _{1'2'} = 2.6 Hz	4.92 q	4.78 q	4.08 m	3.74 dd	2.84 q	5.01 q
<u>3c(+)</u>	5.37 d J _{1'2'} = 2.1 Hz	5.09 q	4.75 q	4.10 m	3.68 dd	2.96 dd 2.66 dd $J_{gem} = 16.7 Hz$	4.98 q
5	6.20 s	4.73 s	4.73 s	4.82 d	4.05 d 3.72 dd J _{gem} = 12.6 Hz	3.00 dd 2.66 dd $J_{gem} = 17.5 Hz$	5.07 q
<u>7</u>	5.83 s	4.78 s	4.78 s	4.33 m	3.60 d	5,67 d	7.43 d

TABLE : NMR data (o ppm)

 OCH_3 : <u>3a</u>(-), 3.76; <u>3c</u>(+), 3.37; <u>7</u>, 3.37 d = doublet, m = multiplet, q = quartet, s = singlet solvent : $CDCI_3$

than for $\underline{3c}$ (-) and that deuterium was not incorporated at C-5. Compound $\underline{3c}$ (+) was acetylated yielding $\underline{3e}$; when this acetate was dissolved in acidic CD₃OD progressive disappearance of the OCH₃ signal could be followed by NMR (it gave rise to a new signal due to methanol). Under these conditions there was no other significant spectral modifications (at least up to 60 % conversion); accordingly, a solvent promoted exchange took place to yield 5'-O-acetyl-5, 6-dihydro-2', 3'-O-isopropylidene-6-methoxy-d₃-uridine. This nucleophilic substitution, which occured with retention of configuration at C-6, presumably involves an immonium species such as $\underline{4}$ (R = Ac) which might be also (R = H) a precursor of $\underline{5}$.

When <u>lc</u> was treated in THF with NaH in the presence of CH_3I at 0°C it underwent a slow reaction to give, surprisingly, 2', 3'-O-isopropylidene-5'-O-methyluridine <u>7</u> (oil). This novel specific reactivity of the 5'-OH towards CH_3I/NaH in THF does not involve a cyclic intermediate such as <u>5</u> since this methylation could be extended to 5, 6-dihydro-2', 3'-O-isopropylideneuridine. However, it is noteworthy that <u>5</u> gave rise, almost imme-. diately, to product <u>7</u> when treated under the same conditions. In this case the rate enhancement might be ascribed to the higher reactivity of the anionic intermediate <u>6</u>¹¹.

Acknowledgement :

We are very grateful to Dr J. Polonsky for encouragement and support throughout this work.

REFERENCES

- 1 J.L. Fourrey and P. Jouin, Preceding paper.
- 2 R. Duschinsky, T. Gabriel, W. Tautz, A. Nussbaum, M. Hoffer, E. Grundberg, J.H. Burchenal and J.J. Fox, J. Med. Chem. (1967), 10, 47.
- 3 This ratio was estimated by inspecting the NMR spectrum of the mixture.
- 4 We used a Hanau TQ 150 lamp with a filter to cut off wavelenghts < 280 nm; with higher temperature (~10°C) the major photoproduct was compound 5.
- 5 The cyclonucleoside 5 can be obtained directly from 2', 3'-O-isopropylideneuridine <u>lc</u>. Thus when a <u>neutral</u> 10⁻³M methanolic solution of the latter is irradiated <u>5</u> is produced in 8 % yield, while in tBuOH it is the major photoproduct.
- 6 M.P. Schweizer, J.T. Witkowski and R.K. Robins, J.Am. Chem. Soc. (1971), 93, 277.
- 7 P. Hart and J. P. Davis, J. Am. Chem. Soc. (1971), 93, 753
- 8 D.V. Santi and E.F. Brewer, J.Am. Chem. Soc. (1968), 90, 6236.
- 9 B.A. Otter, F.A. Falco and J.J. Fox, J.Org. Chem. (1969), 34, 1390.
- 10 Y. Kondo, J.L. Fourrey and B. Witkop, J.Am. Chem. Soc. (1971), 93, 3527.
- 11 We thank M. G. Henry for skillful technical assistance.